Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Germs ; 12(4):434-443, 2022.
Article in English | EMBASE | ID: covidwho-20245447

ABSTRACT

Introduction This study aimed to determine the prevalence of multidrug-resistant Gram-negative bacteria (GNB) from blood cultures in a tertiary-care hospital and the multiplex PCR assay's ability to detect resistance genes. Methods A total of 388 GNB isolates obtained from hospitalized patients between November 2019 and November 2021 were included in the study. Antimicrobial susceptibility testing was done by VITEK 2 system and broth microdilution method. Beta-lactamase-encoding genes were detected by multiplex PCR assays, BioFire-Blood Culture Identification 2 (BCID2) panel (bioMerieux, France). Extended-spectrum beta-lactamases (ESBLs) were detected phenotypically with VITEK AST-GN71 card (bioMerieux, France). The isolates of GNB were classified into multidrug-resistant, extensively-drug-resistant, and pandrug-resistant categories, and their prevalence and distribution in different wards, including coronavirus diseases 2019 (COVID-19) intensive care units (ICU), were calculated. Results Results revealed that all isolates of Acinetobacter baumannii and Pseudomonas aeruginosa were multidrug-resistant as well as 91.6% of Enterobacter cloacae, 80.6% of Proteus mirabilis, and 76.1% of Klebsiella pneumoniae, respectively. In fermentative bacteria, blaOXA-48-like (58.1%), blaNDM (16.1%), blaKPC (9.7%) and blaVIM (6.5%) genes were detected. More than half of Enterobacter cloacae (58.3%) and Klebsiella pneumoniae (53.7%) produced ESBLs. Among non-fermenters, the blaNDM gene was carried by 55% of Pseudomonas aeruginosa and 19.5% of Acinetobacter baumannii. In the COVID-19 ICU, Acinetobacter baumannii was the most common isolate (86.1%). Conclusions This study revealed high proportions of multidrug-resistant blood isolates and various underlying resistance genes in Gram-negative strains. The BCID2 panel seems to be helpful for the detection of the most prevalent resistance genes of fermentative bacteria.Copyright © GERMS 2022.

2.
BMC Infect Dis ; 23(1): 252, 2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-2325849

ABSTRACT

BACKGROUND: The World Health Organization recommends changing the first-line antimicrobial treatment for gonorrhoea when ≥ 5% of Neisseria gonorrhoeae cases fail treatment or are resistant. Susceptibility to ceftriaxone, the last remaining treatment option has been decreasing in many countries. We used antimicrobial resistance surveillance data and developed mathematical models to project the time to reach the 5% threshold for resistance to first-line antimicrobials used for N. gonorrhoeae. METHODS: We used data from the Gonococcal Resistance to Antimicrobials Surveillance Programme (GRASP) in England and Wales from 2000-2018 about minimum inhibitory concentrations (MIC) for ciprofloxacin, azithromycin, cefixime and ceftriaxone and antimicrobial treatment in two groups, heterosexual men and women (HMW) and men who have sex with men (MSM). We developed two susceptible-infected-susceptible models to fit these data and produce projections of the proportion of resistance until 2030. The single-step model represents the situation in which a single mutation results in antimicrobial resistance. In the multi-step model, the sequential accumulation of resistance mutations is reflected by changes in the MIC distribution. RESULTS: The single-step model described resistance to ciprofloxacin well. Both single-step and multi-step models could describe azithromycin and cefixime resistance, with projected resistance levels higher with the multi-step than the single step model. For ceftriaxone, with very few observed cases of full resistance, the multi-step model was needed to describe long-term dynamics of resistance. Extrapolating from the observed upward drift in MIC values, the multi-step model projected ≥ 5% resistance to ceftriaxone could be reached by 2030, based on treatment pressure alone. Ceftriaxone resistance was projected to rise to 13.2% (95% credible interval [CrI]: 0.7-44.8%) among HMW and 19.6% (95%CrI: 2.6-54.4%) among MSM by 2030. CONCLUSIONS: New first-line antimicrobials for gonorrhoea treatment are needed. In the meantime, public health authorities should strengthen surveillance for AMR in N. gonorrhoeae and implement strategies for continued antimicrobial stewardship. Our models show the utility of long-term representative surveillance of gonococcal antimicrobial susceptibility data and can be adapted for use in, and for comparison with, other countries.


Subject(s)
Gonorrhea , Sexual and Gender Minorities , Male , Humans , Female , Neisseria gonorrhoeae/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Cefixime/pharmacology , Cefixime/therapeutic use , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , Homosexuality, Male , Drug Resistance, Bacterial , Ciprofloxacin/pharmacology , Ciprofloxacin/therapeutic use , Microbial Sensitivity Tests
3.
Tetrahedron ; 129 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2303647

ABSTRACT

Historically organometallic compounds have been used to cure certain diseases with limited applications. Although bismuth belongs to the category of heavy metals, many of its derivatives have found applications in modern drug discovery research, mainly because of its low toxicity and higher bioavailability. Being an eco-friendly mild Lewis acid, compounds having bismuth as a central atom are capable of binding several proteins in humans and other species. Bismuth complexes demonstrated antibacterial potential in syphilis, diarrhea, gastritis, and colitis. Apart from antibacterial activities, bismuth compounds exhibited anticancer, antileishmanial, and some extent of antifungal and other medicinal properties. This article discusses major synthetic methods and pharmacological potentials of bismuth complexes exhibiting in vitro activity to significant clinical performance in a systematic and timely manner.Copyright © 2022 Elsevier Ltd

4.
Journal of Isfahan Medical School ; 40(680):550-562, 2022.
Article in Persian | EMBASE | ID: covidwho-2302907

ABSTRACT

Candida auris, a multidrug-resistant yeast, can cause primary or secondary infections in a wide range of patients, including those diagnosed with the new coronavirus to even healthy individuals. The fungus has been reported in less than a decade on all six continents and in more than 45 countries. Ease of distribution, long shelf life, and resistance to several antifungal drugs have raised concerns about the prevention and management of patients with C. auris infection. Recent reports indicate serious challenges in identifying, understanding the mechanism of drug resistance, and preventing mortality from the infection with this microorganism. Given the prevalence of COVID-19 infection, it is important to identify patients colonized with C. auris correctly and at the early stages, to control and prevent a possible outbreak. In this article, the widespread occurrence of infections due to C. auris in the world and Iran, its clinical manifestations, risk factors, pathogenic mechanisms, diagnostic enhancements and challenges, drug resistance, treatment options, prevention, and control as well as concomitant C. auris infections in patients with COVID-19 virus, are reviewed.Copyright © 2022 Isfahan University of Medical Sciences(IUMS). All rights reserved.

5.
Antibiotiki i Khimioterapiya ; 67(11-12):16-21, 2022.
Article in Russian | EMBASE | ID: covidwho-2297553

ABSTRACT

Background. The spread of extensive drug-resistance among gram-negative bacteria calls for the search for antimicrobics with new mechanisms of actions. The aim was to assess susceptibility of extensively drug-resistant K.pneumoniae strains to cefiderocol and other new inhibitor-protected beta-lactams, and to determine genetic mechanisms of antibiotic resistance. Methods. This study included 30 extensively drug-resistant K.pneumoniae strains collected in 2016-2021 from 4 regions of Belarus. Carbapenemase genes were detected by real-time PCR. Minimum inhibitory concentrations (MICs) for cefiderocol and other new antibiotics were assessed by microdilution method using the Sensititre system. Whole genome sequencing was performed for 2 resistant and 3 cefiderocol-susceptible strains. Genome assemblies and annotation were performed using UGENE v. 37.0 software. Nucleotide sequences were translated using CLC Sequence Viewer v. 8.0 (QIAGEN) package. The PROVEAN software was used to assess amino asides substitutions and their influence on the functional activity of proteins. Results. KPC carbapenemase-producers were 4 strains, OXA-48 - 17, KPC+OXA-48 - 1, NDM - 7, OXA-48 + NDM - 1. All KPC-producers were susceptible to imipenem/relebactam and meropenem/vaborbactam. Resistance to ceftazidime-avibactam was noted in all NDM producers and OXA-48+NDM co-producer. The study has identified 9 cefiderocol-resistant strains. These were NDM and OXA-48-producers isolated from hospitalized patients with COVID-19 infection from 3 regions of Belarus. Resistant strains had functionally significant nonsynonymous substitutions in the genes of TonB-dependent receptors for catecholate siderophores FepA (F472V, P64S) and Fiu (T92S). Conclusion. The study has shown high efficacy of new inhibitor-protected carbapenems and cephalosporins against certain types of carbapenemase-producers. Strains with mutational resistance to cefiderocol, an antibiotic not previously used in Belarus, have been identified.Copyright © Team of Authors, 2022.

6.
European Respiratory Journal Conference: European Respiratory Society International Congress, ERS ; 60(Supplement 66), 2022.
Article in English | EMBASE | ID: covidwho-2288249

ABSTRACT

Background: COVID-19 associated pulmonary aspergillosis (CAPA) complicates the course of critically ill COVID-19 patients. Delay in diagnosis and reports of azole resistance in CAPA patients lead to adverse outcome. We had previously reported CAPA rates of 21.7% from our center with high mortality. To detect azole resistance in Aspergillus species isolated from CAPA patients, we performed azole resistance screening. Material(s) and Method(s): Aspergillus species isolated from tracheal aspirates of CAPA patients admitted in Aga Khan University Hospital, Karachi, Pakistan during July 2020- January 2022, were screened for azole resistance as per CDC protocol. Minimum inhibitory concentration of screening positive strains were determined using YeastOne Sensititre plate. Result(s): 92 Aspergillus isolates were screened from 73 CAPA patients for azole resistance. Only 2 (2.17%) A. flavus isolates showed growth on voriconazole well, while other 90 (97%) isolates were screened negative for resistance (Table. 1). MICs of these two strains against posaconazole, voriconazole and itraconazole were 0.5 ug/mL, 1 ug/mL and 0.25ug/mL respectively. Table. 1: Aspergillus species distribution and growth on azole resistance screen agar Conclusion(s): We also did not find any azole resistance in this study. Periodic surveillance for the emergence of azole-resistant clinical isolates using molecular approaches is essential.

7.
Journal of Population Therapeutics and Clinical Pharmacology ; 30(3):e291-e302, 2023.
Article in English | EMBASE | ID: covidwho-2247759

ABSTRACT

Background: The recent emergence of fungal resistance strains has caused concern in medical settings. Medicinal plants continue to be viable sources of bioactive chemicals with therapeutic potential. These compounds can be extracted in different techniques using various solvents that give rise to a wide variety of extracted bioactive compounds that act as anti-fungal. The research aimed to evaluate the effect of fenugreek seed extracts on resistant isolates of Candida spp. isolated from sever COVID-19 patients. Methodology: The study was conducted from August 2021 to November 2022 at Al-Imam Al-Hussein Medical City and Al-Hayat Respiratory Diseases Units. Under a specialist's physician's supervision, severe COVID-19 cases were collected. The collected 455 sputum samples were examined directly and cultured on Sabouraud's Dextrose agar (SDA) media;growth colonies were distinguished and used Grams stain with the API system before the antifungal susceptibility test was performed in accordance with clinical and laboratory standards institute (CLSI 2020) by disc diffusion method to differentiate the resistance microorganism. The extraction process was conducted using the soxhlet technique (100 grams of seed powder and 800 milliliters of solvents (chloroform, methanol, and water) for eight hours. Electrical rotatory evaporators were used to evaporate the extract to get the concentrated crude extracts. FTIR and GC-MS instruments used to detection of bioactive compounds in crude fenugreek seed extracts(aqueous, methanol, and chloroform). Then, different concentrations of each extract (25, 50, 100, and 150 mg/ml) and their effect against the tested resistance study isolated were examined by well diffusion method and Minimum inhibitory concentration was measured. Result(s): A 455 were enrolled in this study. Patients' ages ranged from 20 to 91 years (mean 52.23, SD 15.009). This study indicated that more than half of the samples were males [(262) 57.6%] and [(193) 42.4%] were females. The FTIR and GC-MS showed the methanolic extract potent the most bioactive compounds, followed by the chloroform and water extracts. Evaluation of antimicrobial effects at 50 mg/ml, the methanolic extract showed the greatest effect, with a mean inhibition zone of 9.33 mm and a significant value of 0.01;at 100 mg/ml, the chloroform extract showed the next greatest effect, with a mean inhibition zone of 10.33 mm and a significant value of 0.005. At 150 mg/ml, the aqueous extracts showed the least effect, with a mean inhibition zone of 8.33 mm and a non-significant value of 0.024. Conclusion(s): Candida spp. were most frequent isolated yeast from sputum of patients with severe COVID-19. Methanol extract was the most effective anti-candida, followed by chloroform extract, and the aqueous extract was the least effective. The most effective anti-candida drug is ketoconazole.Copyright © 2022.

8.
Int J Pharm X ; 5: 100174, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2258117

ABSTRACT

The most prevalent conditions among ocular surgery and COVID-19 patients are fungal eye infections, which may cause inflammation and dry eye, and may cause ocular morbidity. Amphotericin-B eye drops are commonly used in the treatment of ocular fungal infections. Lactoferrin is an iron-binding glycoprotein with broad-spectrum antimicrobial activity and is used for the treatment of dry eye, conjunctivitis, and ocular inflammation. However, poor aqueous stability and excessive nasolacrimal duct draining impede these agens' efficiency. The aim of this study was to examine the effect of Amphotericin-B, as an antifungal against Candida albicans, Fusarium, and Aspergillus flavus, and Lactoferrin, as an anti-inflammatory and anti-dry eye, when co-loaded in triblock polymers PLGA-PEG-PEI nanoparticles embedded in P188-P407 ophthalmic thermosensitive gel. The nanoparticles were prepared by a double emulsion solvent evaporation method. The optimized formula showed particle size (177.0 ± 0.3 nm), poly-dispersity index (0.011 ± 0.01), zeta-potential (31.9 ± 0.3 mV), and entrapment% (90.9 ± 0.5) with improved ex-vivo pharmacokinetic parameters and ex-vivo trans-corneal penetrability, compared with drug solution. Confocal laser scanning revealed valuable penetration of fluoro-labeled nanoparticles. Irritation tests (Draize Test), Atomic force microscopy, cell culture and animal tests including histopathological analysis revealed superiority of the nanoparticles in reducing signs of inflammation and eradication of fungal infection in rabbits, without causing any damage to rabbit eyeballs. The nanoparticles exhibited favorable pharmacodynamic features with sustained release profile, and is neither cytotoxic nor irritating in-vitro or in-vivo. The developed formulation might provide a new and safe nanotechnology for treating eye problems, like inflammation and fungal infections.

9.
Pharmacia ; 69(4):981-985, 2022.
Article in English | Scopus | ID: covidwho-2143921

ABSTRACT

Bacterial resistance is a difficult limitation in the treatment of infections. The potential antibacterial activity of WOW peptide conjugation with silver nanoparticles against selected pathogens is investigated in this study. The peptide WOW was created by combining two tryptophan subunits and one ornithine amino acid, and its purity was determined using reverse phase high performance liquid chromatography. Mass spectrometry and electrospray ionization mass spectrometry were used to confirm the WOW peptide. Silver nanoparticles conjugated with WOW were created by adding WOW to a solution of silver nitrate in the presence of the reducing agent sodium borohydride. The yellow-brown color indicated the presence of WOW-AgNPs, which was confirmed by ultraviolet/ visible spectrophotometry. The minimum inhibitory and bactericidal concentrations of WOW nanoparticles were determined using the micro dilution method against Staphylococcus aureus, Escherichia coli, Methicillin resistant Staphylococcus aureus (MRSA), and ESBL Escherichia coli. The Erythrocyte Hemolytic Assay was used to assess the toxicity of nanoparticles conjugated with WOW. WOW alone was effective (MICs between 120 and 215 µgml-1) against both standard and resistant strains of bacteria. WOW –AgNPs, on the other hand, were more effective, with MICs ranging from 30 to 100 µgml-1 depending on the bacteria used. WOW -–after 30 minutes of incubation, silver nanoparticles at a concentration of 100 µgml-1 caused only 3% hemolysis in human erythrocytes.in conclusion, WOW –silver nanoparticles were found to have good antibacterial activity against pathogenic strains of gram positive and gram negative bacteria. Furthermore, the conjugate demonstrated low hemolytic activity and cytotoxicity. As a result, WOW conjugation with AgNPs is a promising treatment candidate for bacterial infection with low toxicity. © copyright salama ah. this is an open access article distributed under the terms of the creative commons attribution license (cc-by 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

10.
World Journal of Traditional Chinese Medicine ; 8(4):463-490, 2022.
Article in English | EMBASE | ID: covidwho-2066828

ABSTRACT

Curcumae Longae Rhizoma (CLR) is the rhizome of Curcuma longa L. Pharmacological studies show that CLR can be used to treat cervical cancer, lung cancer, lupus nephritis, and other conditions. In this paper, we review botany, traditional application, phytochemistry, pharmacological activity, and pharmacokinetics of CLR. The literature from 1981 to date was entirely collected from online databases, such as Web of Science, Google Scholar, China Academic Journals full-text database (CNKI), Wiley, Springer, PubMed, and ScienceDirect. The data were also obtained from ancient books, theses and dissertations, and Flora Reipublicae Popularis Sinicae. There are a total of 275 compounds that have been isolated from CLR, including phenolic compounds, volatile oils, and others. The therapeutic effect of turmeric has been expanded from breaking blood and activating qi in the traditional sense to antitumor, anti-inflammatory, antioxidation, neuroprotection, antibacterial, hypolipidemic effects, and other benefits. However, the active ingredients and mechanisms of action related to relieving disease remain ill defined, which requires more in-depth research and verification at a clinical level.

11.
Indian Journal of Forensic Medicine and Toxicology ; 16(1):11-17, 2022.
Article in English | EMBASE | ID: covidwho-1998192

ABSTRACT

Acinetobacter baumannii (Ab) is developing resistance to a variety of common antibiotics. and become multidrug resistant, extreme drug resistant, and pan drug resistant pathogens, requiring the identification of new antibiotics as well as the identification of new plant compounds capable of acting against Ab. Recent research has revealed MDR Ab co-infections with COVID-19,, raising alarm bells. Since its isolation, Usnic acid has been investigated for a variety of pharmacological activities, including antioxidant, antitumor, antibacterial, antifungal, antiviral, antiprotozoal, and insecticidal. Many Plant-derived drugs show promising activity as new antimicrobial agents against multidrug resistant (MDR) strains. There is insufficient data to support the antibacterial activity of (+)-UA against MDR Acinetobacter baumannii.. In the present study, we evaluated the antimicrobial activity of naturally occurring compound (+) usnic acid (UA) against MDR Ab. We determined the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC), time-kill assay in twenty multidrug resistant Acinetobacter baumannii clinical isolates collected from two different centers. Results revealed promising activity of (+)-UA with MIC concentration of 512–1024 µg/mL and MBC 2048 –4096 µg/mL. The MBC/MIC index indicated that the compound was bactericidal. The time-kill assay revealed a gradual decrease in the log10 value of the bacteria. Since there is a limited research available on the activity of usnic acid against MDR Acinetobacter baumannii, present study fills the gap.

12.
Jundishapur Journal of Microbiology ; 15(5), 2022.
Article in English | EMBASE | ID: covidwho-1979586

ABSTRACT

Background: Clostridium spp. spores are resistant to many factors, including alcohol-based disinfectants. The presence of clostridial spores in a hospital environment may lead to infection outbreaks among patients and health care workers. Objective: This study is aimed to detect clostridial spores in the aurology hospital using C diff Banana Broth™ and assess the antibiotic sensitivity and toxinotypes of isolates. Methods: After diagnosing COVID-19 in medical staff and closing an 86-bed urology hospital in 2020 for H2O2 fogging, 58 swabs from the hospital environment were inoculated to C diff Banana Broth™, incubated at 37°C for 14 days, checked daily, and positive broths were sub-cultured anaerobically for 48 h at 37°C. After identification, multiplex PCR (mPCR) was performed for Clostridium perfringens, C. difficile toxin genes, and minimum inhibitory concentration (MIC) determination. Results: In this study, 16 out of 58 (~ 28%) strains of Clostridium spp. were cultured: 11-C. perfringens, 2-C. baratii, and 1 each of C. paraputrificum, C. difficile, and C. clostridioforme. 11 C. perfringens were positive for the cpa, 7-the cpb2, 2 – cpiA, and 1 – cpb toxin genes. All isolates were sensitive to metronidazole, vancomycin, moxifloxacin, penicillin/tazobactam, and rifampicin. Two out of the 11 C. perfringens strains were resistant to erythromycin and clindamycin. Conclusions: Regardless of the performed H2O2 fogging, antibiotic-resistant, toxigenic strains of C. perfringens (69%) obtained from the urology hospital environment were cultured using C diff Banana Broth™, indicating the need to develop the necessary sanitary and epidemiological procedures in this hospital.

13.
Buildings ; 12(5):637, 2022.
Article in English | ProQuest Central | ID: covidwho-1871178

ABSTRACT

This study features the development of a framework to identify drivers towards increasing adoption of modular integrated construction (MiC) methods for affordable sustainable housing (ASH). The rise of offsite construction (OSC) techniques, especially MiC, has been evident in recent years. MiC’s adoption in ASH is still underdeveloped;however, due to various benefits of MiC over conventional construction methods, it is envisioned to be a significant emerging approach for tackling growing housing demand, and ASH in particular. Although a few prior studies identified some factors for utilization of MiC towards ASH, studies to date have not provided a holistic review of drivers or a comprehensive framework of the interrelationships between such drivers. To address this issue, this study utilizes a three-way process including a systematic literature review, semi-structured interviews and the Total Interpretive Structure Modelling (TISM) method to study the drivers for MiC adoption in ASH. Initially, 111 drivers were extracted from a review of 40 studies in the existing literature. Following that, the significant drivers of MiC adoption for ASH were grouped into cost, time, productivity, quality, environmental, social, policy and demand. Drawing on concepts of systems thinking and graph theory, the TISM model for eight drivers was developed from both the literature review and the interview results. Four levels of hierarchy were found among drivers containing linkage, driving, depending and autonomous. Succeeding the steps of TISM and Reachability Matrix (RM) and Matrice d’ Impacts Croises-Multipication Appliqué a Classement (MICMAC) analysis, social drivers were found to have the highest driving and lowest dependency power, followed by productivity and policy drivers. This signifies the importance of social factors for enhancing MiC adoption for ASH. In addition, a strategic framework of boosting MiC adoption in ASH is also presented, highlighting the key stakeholders and strategies for transformation along with conclusions. This study delivers a wider landscape of drivers for MiC-ASH synergy that may assist practitioners, policy makers and relevant stakeholders to better understand the relationships between the drivers.

14.
International Journal of Microbiology ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-1871145

ABSTRACT

The antimicrobial potential of Aspergillus sp., isolated from the Amazon biome, which is stored at the Amazon Fungi Collection-CFAM at ILMD/FIOCRUZ, was evaluated. The fungal culture was cultivated in yeast extract agar and sucrose (YES) for cold extraction of the biocompounds in ethyl acetate at 28 °C for 7 days in a BOD type incubator. The obtained extract was evaluated for its antimicrobial activity against Candida albicans and Gram-positive and negative bacteria by the “cup plate” method and the determination of the minimum inhibitory concentration (MIC) by the broth microdilution method. The extract was subjected to thin layer chromatography (TLC) and fractionated by open and semipreparative column chromatography. The fractions of interest had their chemical constituents elucidated by nuclear magnetic resonance and mass spectrometry. The elucidated molecule was evaluated for cytotoxicity against the human fibroblast strain (MRC5). The extract presented inhibitory activity against both Gram-positive and negative bacteria, with the range of inhibition halos from 5.3 to 14 mm in diameter and an MIC ranging from 500 to 15.6 μg/mL. Seventy-one fractions were collected and TLC analysis suggested the presence of substances with double bond groups: coumarins, flavonoids, phenolic, alkaloids, and terpenes. NMR and MS analyses demonstrated that the isolated molecule was kojic acid. The results of the cytotoxicity test showed that MRC5 cells presented viability at concentrations from 500 to 7.81 μg/mL. The kojic acid molecule of Aspergillus sp., with antibacterial activity and moderate toxicity at the concentrations tested, is a promising prototype of an alternative active principle of an antimicrobial drug.

15.
Am J Health Syst Pharm ; 79(16): 1307-1308, 2022 08 05.
Article in English | MEDLINE | ID: covidwho-1831003
16.
Research Results in Pharmacology ; 8(1):43-50, 2022.
Article in English | EMBASE | ID: covidwho-1798849

ABSTRACT

Introduction: The problem of antibiotic resistance of microorganisms is becoming more urgent in the twenty-first century. More and more pathogenic microbes are becoming resistant to two or more antibiotics. This problem has become worse into the COVID-19 pandemic. The search for new compounds with antimicrobial activity is one of the principles for overcoming the antibiotic resistance of microorganisms. Materials and methods: Methods for the preparation, isolation, and identification of salts of 2,3,5-trimethyl-, 1,2,3,5-tetramethyl-, 2,3-dimethyl-5-methoxy-, 5-methoxy-1,2,3-trimethyl-1H-indole-6-amines and trifluoroacetic acid were developed and laboratory microbiological studies of them for antimicrobial activity were carried out. Sensitivity of the test-strains of microorganisms to the new compounds was studied. A method of serial dilutions to determine the minimal inhibitory concentration (MIC) of the compounds under study was used in the study. Results and discussion: The compounds 5-8 showed a pronounced antibacterial activity against the test strains of microorganisms in vitro with MIC from 0.98 μg/mL to 125.0 μg/mL. The prospects for targeted synthesis of biologically active compounds which are derivatives of 1H-indolylamines with a trifluoromethyl group in the molecule were determined, and after additional studies, the compounds 5-8 may find application as water-soluble synthetic antimicrobial agents. Conclusion: The laboratory microbiological screening of showed that they have an antimicrobial effect that exceeds the activity of the reference drug, dioxidine. The presence of molecular mechanisms predicted in silico in the spectrum of biological activity of the studied compounds, such as Pseudolysin inhibitor, Omptin inhibitor, Undecaprenyldiphospho-muramoylpentapeptide beta-N-acetylglucosaminyltransferase inhibitor, UDP-epimerase inhibitor, Bacterial efflux pump inhibitor, suggests the presence of antimicrobial activity against gram-positive and gram-negative microorganisms. Trifluoroacetates 2,3,5-trimethyl-1H-indole-6-ammonium (5), 1,2,3,5-tetramethyl-1H-indole-6-ammonium (6), 2,3-dimethyl-5-methoxy-1H-indole-6-ammonium (7), 1,2,3-trimethyl-5-methoxy-1H-indole-6-ammonium (8), after additional studies, may find application as water-soluble synthetic antimicrobial agents.

17.
Food Chem X ; 14: 100302, 2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1796842

ABSTRACT

Kombucha, originated in China 2000  years ago, is a sour and sweet-tasted drink, prepared traditionally through fermentation of black tea. During the fermentation of kombucha, consisting of mainly acidic compounds, microorganisms, and a tiny amount of alcohol, a biofilm called SCOBY forms. The bacteria in kombucha has been generally identified as Acetobacteraceae. Kombucha is a noteworthy source of B complex vitamins, polyphenols, and organic acids (mainly acetic acid). Nowadays, kombucha is tended to be prepared with some other plant species, which, therefore, lead to variations in its composition. Pre-clinical studies conducted on kombucha revealed that it has desired bioactivities such as antimicrobial, antioxidant, hepatoprotective, anti-hypercholestorelomic, anticancer, anti-inflammatory, etc. Only a few clinical studies have been also reported. In the current review, we aimed to overhaul pre-clinical bioactivities reported on kombucha as well as its brief compositional chemistry. The literature data indicate that kombucha has valuable biological effects on human health.

18.
Research Journal of Pharmacy and Technology ; 15(1):127-136, 2022.
Article in English | EMBASE | ID: covidwho-1744018

ABSTRACT

The diversity in Jordan’s flora due to its geographical areas make is well noted in the scientific literature. The challenge of disease and death caused by infectious diseases like viruses and bacteria, and as infectious diseases evolve and pathogens develop resistance to existing pharmaceuticals, the search for new novel leads, possibly with different modes of action, against bacterial and viral diseases has intensified in recent years. The intent of this review is to provide prevalent information on the antibacterial and antiviral potential in medicinal plants in Jordan, mode of action, type of viruses and bacteria, and phytochemical contents. It has been demonstrated by several studies presented in this review that medicinal plants in Jordan are rich in phytochemicals and possess antiviral and antibacterial properties.

19.
Open Forum Infectious Diseases ; 8(SUPPL 1):S191-S192, 2021.
Article in English | EMBASE | ID: covidwho-1746727

ABSTRACT

Background. Multiple studies have shown that antibiotic utilization increased during the COVID-19 pandemic. However, the impact of this increased utilization has not been well established. The aim of this study is to describe the trends in minimum inhibitory concentrations for various antibiotics against common gram-negative pathogens observed since the start of the COVID-19 pandemic as compared to previous years. Methods. This retrospective study was conducted at the Memphis VA. All respiratory, urine, and blood culture MicroScan results run from October 2017-March 2021 were analyzed. Only inpatient and emergency department data was included. The MIC50 and MIC90 of seven antibiotics for four of the most common pathogens were trended by quarterly intervals. Results. MIC50 and MIC90 were compared using standardized breakpoints. As compared to previous years, Pseudomonas aeruginosa was noted to have the most sustained increase in MIC90 across various antibiotics. In the last 3 quarters of the study time frame, piperacillin-tazobactam mean MIC90 increased from 32 to 64, cefepime from 8 to > 16, and meropenem from 4 to > 8. Escherichia coli had a sustained increase in ceftriaxone MIC90 from < 1 to > 8 in the final quarter of 2020 and beginning of 2021. Klebsiella pneumonia was also found to have a sustained increase in cefepime mean MIC90 from < 1 to > 16 during the year of 2020, with return to previous MIC90 the following quarters. Conclusion. Previous studies have clearly demonstrated a widespread increase in antibiotic utilization during the COVID era. Our study demonstrates how even short-term increases in antibiotic use can lead to shifts in MIC, if not outright resistance. This was demonstrated across multiple common gram-negative pathogens and to various broad-spectrum antibiotics which were commonly used more frequently during COVID-19. Further analysis will be needed to determine whether these trends continue or whether the decrease in antibiotic utilization in the recent months will lead to similar decrease in MIC.

20.
Journal of Clinical and Diagnostic Research ; 16(3):DC1-DC5, 2022.
Article in English | EMBASE | ID: covidwho-1744634

ABSTRACT

Introduction: The Coronavirus Disease 2019 (COVID-19) is associated with damage of cells of both innate and adaptive immunity, which results in immune system's impairment leading to secondary infections. Microbiological evaluation helps in diagnostic as well as antimicrobial stewardship leading to accurate treatment of COVID-19 infected patients. Aim: To evaluate superadded bacterial and fungal infections in COVID-19 infected patients and to evaluate bacterial and fungal infections in COVID-19 non infected patients admitted with Acute Respiratory Illness (ARI). Materials and Methods: This retrospective study was carried out in a tertiary care hospital in Delhi, India, over a period of eight months (May to December, 2020). Respiratory samples, received from indoor patients with history of ARI, were processed for COVID-19 (TrueNat Real Time Polymerase chain reaction) as well as for bacterial and fungal cultures following Standard Operating Procedures (SOP). Identification and susceptibility pattern was evaluated by Vitek2 compact system (bioMérieux, Inc. Durham, North Carolina/USA). Quality control strains used were American Type Culture Collection (ATCC) Staphylococcus aureus 29213, Escherichia coli 25922 and Candida parapsilosis ATCC 22019. Minimum Inhibitory Concentration (MIC) levels were standardised as per Clinical and Laboratory Standards Institute (CLSI) guideline, 2020. All statistical analysis was done by Chi-square test using Software Statistical Package for the Social Sciences (SPSS) version 22.0. Results: Total patients admitted with the history of ARI were 542;COVID-19 Positive Group (CPG) included 115 (21.22%) while COVID-19 Negative Group (CNG) included 427 (78.78%). Growth in bacterial and fungal cultures in CPG was 59.13% (68/115) while in CNG;it was 47.78% (204/427). Among the bacterial isolates, most common isolate was Klebsiella pneumoniae {CPG: 41.93% (26/62);CNG: 36.72% (76/207)}, followed by Pseudomonas aeruginosa {CPG: 33.87% (21/62);CNG: 31.88% (66/207)}. Fungal isolates in CPG was 19.48% (15/77) (p-value 0.0445). On comparing Antimicrobial Susceptibility (AST) pattern of Enterobacterales in both CPG (n=36) and CNG (n=102), no statistically significant difference was observed. Co-morbid conditions were found mostly in CNG 89% (140/158) with ARI while only 11% (18/158) was found in CPG. Conclusion: Secondary respiratory infections are quite common amongst COVID-19 positive patients. However, growth in culture, type of isolates, Antimicrobial Resistance (AMR) was almost similar with COVID-19 non infected patients admitted with ARI. Co-morbidity had the similar impact as COVID-19 infection with respect to co-infections.

SELECTION OF CITATIONS
SEARCH DETAIL